Tuesday, August 6, 2019

Benefits of Seaweed Enhancement for Crop Growth

Benefits of Seaweed Enhancement for Crop Growth CHAPTER 1 INTRODUCTION Background Soil enhancement with organic materials is a common component of soil fertility management for crop production, with the aim of providing essential plant nutrients and improving overall soil physical, chemical, and biological quality (Diacano and Montemurro, 2010). Marine macro-algae, or seaweed, has been historically used as a soil enhancement material, and may have application for modern agriculture as a low cost source of nutrient-rich biomass (Angus and Dargie, 2002; Cuomo et al., 1995). While seaweed compost and extract products have been widely evaluated for agricultural applications (Woznitza and Barrantes, 2005; Khan et al., 2010), evaluation of unprocessed seaweed biomass as an enhancement material is limited, particularly with regard to soil quality. Application of seaweed material may uniquely affect soil quality parameters as a result of its chemical characteristics, including carbon (C) and nitrogen (N) composition, and salt, sulfur (S), heavy metal, and trace element co ntent. In this study, the putative benefits of seaweed enhancement for crop growth and production were assessed on various crops in field experiment, including analysis of soil physical, biological, and chemical properties. 1.2 Historical use of seaweed in agriculture. In coastal regions, collection and application of seaweed is a traditional soil fertility management strategy, especially where agriculture relies on use of local resources (Cuomo et al., 1995). As a readily-available, low-cost material to supplement soil fertility, application of seaweed biomass is often an integral component of traditional, small-scale, diversified agriculture (Angus and Dargie, 2002). For instance, agriculture in the Machair region of the Scottish Outer Hebrides Islands involves a rotation-intensive system that integrates the application of locally available seaweed biomass (Angus and Dargie, 2002; Kent et al. 2003). Traditional agriculture of the Machair, practiced for at least 1,000 years before present (YBP), relies on a â€Å"crofting† system that generally includes an intensive rotation of livestock grazing, field crop cultivation, and two years of fallow, with hypothesized effects on soil biodiversity (Angus and Dargie, 2002; Vink et al., 2009). Soil fertility is still largely maintained by the traditional practice of application of manure and seaweed, primarily the brown alga Laminaria digitata (Angus and Dargie, 2002), which is collected and piled onshore for 1-2 weeks prior to application. Promotion of seaweed application as a part of sustaining small-scale, diversified agriculture is supported by Scottish Natural Heritage, a governmental conservation organization, as well as local conservation group efforts (Angus and Dargie, 2002).In addition to the Machair region, historical accounts of seaweed use in agriculture range from the British Isles, to coastal mainland Europe, to the northeastern region of the United States, including New York, Maine, and Rhode Island (Fussel, 1973; Smith et al., 1989; Cuomo et al., 1995). For example, prior to the adoption of synthetic fertilizer, potato production in Rhode Island incorporated seaweed collection as a means of maintaining soil fertility, including for agricultural research at the University of Rhode Island Agricultural Experiment Station (R. Casagrande, personal communication). Seaweed in the modern agricultural context In organic or reduced-input cropping systems, both in the U.S. and worldwide, seaweed-based agricultural products (e.g. extracts for foliar application and composts) are commonly employed (Khan et al., 2009). However, application of unprocessed biomass is less prevalent. To reduce dependence on application of inorganic fertilizers, make use of an abundant (sometimes over-abundant) resource, and improve soil quality, the traditional practice of seaweed application may have modern application in coastal regions. Because adding seaweed to soil can increase plant macro and micronutrients, and may improve soil biological, chemical and physical properties (Khan et al., 2009), the practice may be an additional strategy to manage soil fertility and quality that addresses the dual problems of reliance on inorganic chemical fertilization and wasting o f valuable, nutrient-rich biomass. Inorganic fertilizer inputs account for a large fraction of conventional farm expenses, energy consumption, and carbon emissions (Lal, 2004). Application of inorganic fertilizers without addition of organic enhancements, cover crop use, or use of alternative tillage practices can result in depletion of soil organic matter (SOM), with concomitant negative effects on many soil properties important for crop productivity (e.g. nutrient retention, moisture-holding capacity, aggregate formation, and microbial activity) (Brock et al., 2012; Franzluebbers, 2012). Furthermore, levels of nutrient elements other than N, P, and K (e.g. Ca, Mg, Mo, B, and S) are generally low in inorganic fertilizers, and are of increasing concern for crop quality and nutritional value (Welch and Graham, 2012). Consequently, reliance on inorganic fertilizer as a sole source of fertility is often questioned as a sustainable management strategy, and 4diversification of inputs is encouraged, particularly inputs that provide not only primary nutrients (i.e. N, P and K), but also organic matter and trace elements (Lal, 2004). Organic enhancements used to improve soil fertility include traditional (e.g. animal manure) and non-traditional (e.g. industrial by-products) materials (Power et al., 2000). Seaweed, which contains primary nutrients, organic C, and other nutrient elements, is thus a good candidate organic enhancement material as part of a diversified soil fertility management strategy. In addition to the potential crop nutrition benefits of seaweed enhancement, the prevalence of seaweed biomass in coastal areas as a result of both natural phenomena and anthropogenic impacts may allow for use of seaweed with minimal cost. Nutrient (N and P) enrichment of coastal waters – sometimes attributed to fertilizer runoff from agriculture and home use – can cause excessive seaweed growth (Morand and Merceron, 2005). In addition to detrimental ecological impacts (e.g. oxygen depletion), the accumulation of seaweed biomass on beaches can have negative economic consequences (RI DEM, 2010). For instance, in the summer of 2012,  accumulation of the red seaweed Polysiphonia sp. on Massachusetts beaches required mechanical removal and disposal in order to maintain beaches for public use, costing money for equipment use and labor, as well as preventing beach use. Beach-cast biomass is often removed and disposed of in landfills. Although the species composition and pro perties of beach-cast seaweed varies based on location and environment (e.g. estuarine vs. marine), the coordination of accumulated seaweed biomass removal with agricultural application may provide a low-cost, locallyavailable resource for soil fertility management. To initiate this arrangement for 5 coastal regions, characterization of seaweed biomass in terms of location and abundance, species composition, and chemical characteristics relevant to soil quality and plant nutrition is required. Additionally, quantification of seaweed biomass effects on soil quality and crop production is required to validate putative benefits or negative effects of seaweed enhancement practices 1.2.3 Scope Marine algae is estimated to contribute about 70 % to 80 % of earth’s atmospheric oxygen, amounting to about 330 billion tonnes of oxygen per year (Hall, 2008). This is an indication of how important algae are to the environment. Algae are simple, autotrophic organisms that are either microscopic or macroscopic. Specifically, seaweeds are macroscopic algae that thrive in benthic marine waters. Just like terrestrial plants, these groups of multicellular organisms are autotrophic and thus have the ability to carry out photosynthesis. However, they do not posses several distinct organs such as true leaves, roots, flowers and seeds that typify terrestrial plants (Sumich Morrissey, 2004). There are roughly 10000 different species of seaweeds recorded. Generally, seaweeds can be divided into three groups, namely Rhodophyceae (6000 species), Chlorophyceae (2000 species) and Phaeophyceae (2000 species) based on their colour pigment (Guiry Guiry, 2011). The genus being studied,  Sar gassum, belongs to the group Phaeophyceae, which obtains its distinctive brown colour from the xantophyll pigment of fucoxanthin. Cell walls of these algae are mainly composed of cellulose and alginic acid, a valuable component that adds commercial value to Sargassum species. In Asia, seaweeds are commonly used as fertilizers and as food for both humans and animals. Trono (1999), McHugh (2003) and Phang (2006) are among the many authors who have listed down the beneficial usages of seaweeds which include Sargassum as raw products for cosmetic and pharmaceutical industry.

Monday, August 5, 2019

Meeting Energy Demands of the Growing Population

Meeting Energy Demands of the Growing Population Literature review Nowadays, an important factor for economic and social development is energy sufficiency. Energy is the fuel of growth. Scientists predictions show that by the year 2050, energy demand will increase significantly due to the fact of the increasing population of the earth and that more buildings are going to be constructed. (Ref: Facts and trends, energy and climate, world business). A lot of predictions are published about how fast the population, the economy and the energy consumption of the world will increase in the years and decades to come. In reference to the matter of growth, development and energy demand, most of the predictions were wrongly made. Most predictions are reciprocally dependant on each other, and each one relies on many other factors. However, the only prediction that can be securely made is for the population and that the growth will be larger in the less development countries than the developed countries. (UNITED NATIONS) Developed countries are managing to improve the living conditions and decrease the death rates, but at the same time the birth rates have been decreasing at about the same rate over the last century. By this way the population growth is around 0.4% per year, in the industrialized world. On the other hand, less developed countries are managing their development and as a result have increased birth rates and decreased death rates. Consequently, their average population growth has increased from about 1% per year, from fifty years ago to about 2.1% per year today. At the moment, the worlds population is increasing at an annual rate of 1,7%, whereas the population in developed countries is around 1,2 billion (25% of the total) and in less developed countries is around 4 billion (75% of total world population). (United Nations) Population increases are directly connected with the energy demand and the building sector. It is therefore essential to develop new energy technologies on a massive scale for everyone to be able to survive on this planet. Ordinary buildings are unable to contribute to these essential needs, and cover the gush of the energy demand which is going to follow over the next decade. Energy use and climate impacts Power plants use fossil fuels for their energy productions and therefore this way cover the energy demands of the people. As a consequence though, from the burning of the fossil fuels, green house gases are produced and emitted into the atmosphere. As mentioned in the introduction, these anthropogenic activities have a significant contribution to the green house effect and the climate changes. Generally, in reference to the climate changes issues, scientists opinions are split into two. On the one hand, it is believed that the changes are part of the earths life and it is something normal which has been accelerated by our human activities and there is a possibility to stabilize the climate changes. On the other hand, it is believed that these changes are not normal and are going to make the world uninhabitable. For this reason, fast and immediate actions should be taken by all countries, targeting to reduce the energy demands and green house gases. It is almost definite that any of these actions will have a deep impact on the economy of each country. Many people believe that energy saving, means diminishing the current quality of living and reducing economy activity. In addition, economists believe that without economic growth, investments on technology will be reduced as it will difficult to confront climate changes. On the other hand, scientists argue that technological development is the key to the solution in reference to the climate changes problem. The truth is that, any solution in reference to climate changes will need an effort from everyone and investments on technological research and development, giving us this way a chance for a better future! IPCCs fourth assessment report further concluded that the building sector is not only the largest potential for significantly reducing greenhouse gas emissions, but also that this potential is relatively independent of the cost per ton of CO2 eqv. achieved. With proven and commercially available technologies, the energy consumption in both new and old buildings can be cut by an estimated 30-50 percent without significantly increasing investment costs. Energy savings can be achieved through a range of measures including smart design, improved insulation, low-energy appliances, high efficiency ventilation and heating/cooling systems, and conservation behaviour from the buildings users. (Reference- IPCCs fourth assessment report) Summarising the above it is obvious that the population growth, economic development, human habits, way of living and environmental restrictions influence the energy demand around the world. Scientists and in general, the governments who are trying to give solutions to the big problem of the growing energy demands and its consequences, have to take into account all of these factors. Reshaping the energy future It is necessary for all countries to reshape the future of energy, as all scientific researches show. The actual word reshape, includes new innovation technologies and sources which are going to contribute to the energy needs of the world. It is necessary to find new paths which are further environmental friendly and will permit a better future. A lower carbon world is feasible in the next decade even during the next few years, if all countries can realize that significant changes that should be done. This especially applies to the developed countries as they have to reconsider and find a link between the quality of life and their energy consumption. It is necessary for everyone to understand that a high standard of living does not demand a high consumption of energy and to adapt to the new energy sources. The good news is that small changes in the energy scenery are now visible as many have started to be influenced. For example, the raised use of gas, the use of renewable energy on buildings, everyday life and high efficiency cars are some of the small steps that have been offered to people due to technological development. As figure three shows, the IPCC scenarios (A1B-AIM and B2-AIM) were based on the new technological achievements in the energy sector. It is definite that this evolution is not enough for our earths climate but the two scenarios predict a possible CO2 stabilization. Finally, efforts to create an energy efficient world are starting, in reference to low carbon technologies and effective measures. (Reference-world business facts and trends on climate change) As stated in the report of the World Business Council for Sustainable Development (WBCSD) a lower carbon world would require a marked shift in the energy/development relationship, such as similar development levels to be achieved with an average of 30% less energy use. Both energy conservation through behavioural changes and energy efficiency via technology plays a role. Such a trend is a feature of the IPCC B1 storyline, which sees a future with a globally coherent approach to sustainable development. It describes a fast-changing and convergent world toward a service and information economy, with reductions in material intensity and the introduction of clean and resource efficient technologies. The scenario leads to relatively low GHG emissions, even without explicit interventions to manage climate change.'(Reference Energy and climate change, world business) A Sustainable World Energy Perspective An important key to the worlds energy problem is sustainable development. Sustainability includes the economic and technological development, which respect and protect the environment. Searching literature for an exact definition of sustainable development, guided us to the The Brundtland Report of the UN World Commission on Environment and Development. In this report a definition of sustainable development, is given: Humanity has the ability to make development sustainable – to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs However it is difficult to find exact definitions which represent the sustainable development accurately, due to the fact that it is an idea which involves too many parameters. (Reference Engineering_for_Sustainable_Development) It is amazing to see how the sustainable development concept, stays on important issues of discussion even with the passing of tweedy years from the Brundtland report. In this concept, development faces three important paths: the economic, the social and the environmental (figure 4). If governments want to meet these targets it is necessary to carry out innovative technologies and a socio-economic approach. Nevertheless, sustainable development is not the only problem and therefore it is always important to consider the three major paths. Protection of the environment, economic success and improvement of social conditions, will be the achievements of a flourishing sustainable development. These three paths are linked together for a sustainable development and their integration must be equal without any compromises. The goal of sustainable development is, to point out the importance of the environment to the public who are now alive and for the coming generations. It is important for everyone to understand that our existence depends on the global environment and every decision of this generation is going to affect the lives of our future generations. Thus for this goal to be achievable, it is necessary to take measures for low green house emissions, use renewable sources and improve the energy consumption of our current lives. Governments and engineers are searching for the best way to come within reach of this goal as it is very difficult for developed and developing countries to achieve it. Presently, the building sectors involvement is essential because of its deep impact on energy consumption, its significant emissions and its use of huge natural sources. The buildings that currently exist will continue to exist, for more than 30 years and therefore this influences the lives of future generations. A sustainable approach of this sector is necessary due to its rapid growth. The new approach for the buildings sector will include buildings which will need less energy to operate, produce low carbon emissions, use environmental friendly materials and produce their own energy from renewable sources. It is almost definite that the sustainable green development of the building sector will help countries accomplish the targets of the Kyoto Protocol, whilst also guarantee at the same time, the future for coming generations. Evolution of the buildings and the opportunity for change. As believed by many, buildings are our third skin and this plays an important role for humans to survive. From the beginning of human history, humans always aimed to try and protect themselves from all weather conditions and all changes, developing due to this, different kinds of shelters. Over the years, humans adapted and managed to survive all the different changes that have happened on earth. The question now, is what will happen whilst we are facing the rapid climate changes and what will be the future consequences? Hundreds of thousands year ago, people moved from place to place and tried to create the best conditions to live in. Depending on the place, whether hot or cold, humans developed different kind of shelters to protect themselves from the heat of the sun in the deserts, or the cold of the northern climates. Studies of these people movements over the years, shows us a big variety of shelters and developments of different ways in order to face the climate conditions. Other factors, which determine the humans survival techniques in extreme conditions from the past, like the lower attitude of the Arctic Circle, were the design of the buildings, the quality of clothes and the behavioural adaptations, like changing posture, activity level sand choosing the most comfortable space to occupy, by moving around rooms and buildings and landscapes; and then of course the use of energy from the burning of fossil fuels or the careful use of stored energy in heat or cold stores. (Adapting building cities for climate change) Another extraordinary point from past decades is the energy issue. People mainly used coal, wood and water to provide themselves with enough energy, whether in a passive or active manner and covered in this way, their need for heating or cooling. By taking advantage of the natural and available energy resources, humans managed to develop houses which were ready for all extreme weather conditions. All these extreme weather conditions made humans innovate new approaches for buildings, and provide them with a more comfortable life. An interesting approach of surviving all the climate changes is to move to different areas at the respective time of the year, which is when they are comfortable, and to leave them again when they are not – to migrate. (Adapting building cities for climate change) This approach is an impossible one to apply, in the modern way of life and the new cities. Nevertheless what could be extracted from the past is the expertise of the ancient people and the way they faced the climate changes. In our day and age, engineers and scientists use the knowledge from the past whilst at the same time search for new innovative approaches for the buildings. The evolution of the buildings sector involves the innovation of new technologies whilst the same time, protecting the environment and its natural sources. It is not just a matter of how to build or what to build but it is also a matter to make the buildings adaptable to the new challenges of the climate changes and energy efficient. This evolution is directly connected with the world surviving because buildings are part of the global environment which at the moment is in danger. As written in the book titled Adapting Buildings and Cities for Climate Change the risk of not surviving in a particular building type and region will be largely dependent on the nature of that building and on how much the climate changes. Both are crucial in the challenge of designing buildings today in which people can be comfortable in 50 years time. At the point where the evolution of the building sectors began, there are great opportunities to change the current negative predictions of the climate changes. Significant reductions on energy consumption, better design, adequate technology and appropriate behaviours are some of the keys points which could accomplish the transformation of the buildings sector (figure 7). This transformation needs the participation and contribution from the businesses, the markets, the politicians and engineers. All together, they must act right away because the use of renewable sources is slowly growing and the energy demand is rapidly increasing, setting this way, tight deadlines in order to transform the sector. As it is mentioned in the Energy Efficiency, Buildings report and the IPPC 4th Assessment report, Residential and commercial buildings, action is essential as part of the worlds response to climate change because energy use in buildings is 30-40% of final energy consumption and carbon diox ide emissions in most countries. (Reference- Energy Efficiency in the Buildings report and the IPPC 4th Assessment report, Residential and commercial buildings) There are many opportunities to transform the buildings sector into the new era, as well as being feasible and applicable for old and new buildings. Significant energy reductions can be achieved by using new technologies, e.g. energy efficiency appliances, low consumption cooling systems etc, use of renewable sources, better design and operation and use of environmental friendly materials. Using these methods it will be possible to reduce the energy demand of up to two-thirds. Low-energy buildings must become the norm rather than the novelty project. (Reference- Energy Efficiency in the Buildings report) Beyond the opportunities given to change the buildings sector and stabilize the climate changes, this transformation will additionally contribute to the economy growth by giving new opportunities for jobs and businesses. (Reference- Energy Efficiency in the Buildings report)As already mentioned, the transformation will only succeed in the case where, building energy becomes a high priority to the governments and businesses leaderships, whilst cooperation between engineers, businesses and authorities is also established in reference to this issue.( Reference- Energy Efficiency in the Buildings report) Buildings types: characteristics and profiles Around the world, a vast variety of different types of buildings can be found, and each different type covers multiple and different needs. It is therefore essential at this point, to present the different types of buildings, as this report will focus on the buildings sector and the energy demands. Despite the fact that in the literature review, it is possible to find a plethora of terminology of the building types, nevertheless the general idea of this separation, of the buildings into categories is the same. Usually the separation of the buildings is a result of its use. It is very important to additionally mention at this point, that in most countries, many of the buildings were built before any energy regulation and these buildings will be around for at least the next 40 years. As figure 8 shows, in Europe, 50% of the buildings were built before 1975. Residential Buildings Residential buildings are commonly found all over the world. However, big and small differences can be found in all of them depending on the climate varieties of each country. For example, in hot climates the important need is for cooling and keeping the temperatures comfortable all over the house. This is achieved by the use of control systems, high insulation materials, shading systems and double or triple glazing. Additionally, this way, the energy demands and cost stays under control. In addition, a high use of passive or active solar systems is found in these hot climate countries. On the other hand, buildings in the cold climates have different needs to achieve temperature comfort. In these climates, the need for heating is essential but this is directly related with other parameters, such as low emissivity windows, good insulation materials and good design. It is very important in these climates, whilst designing, to consider the thermal mass of the building, as this may contr ibute during the night to the heating. (Low-Energy Building Design Guidelines) Where residential buildings are concerned, it is easy to use renewable sources and cover the energy needs of a house because the demand is not so big. For example, photovoltaic systems can be used as the main source of energy, minimizing the CO2 emissions and the operation costs of the building. Non-Residential Buildings Non-Residential Buildings are also commonly located all over the world. In contrast with the Residential buildings, these kinds are appropriate for extreme hot or cold climates, without any access to utilities. As it is described in the Low-Energy Building Design Guidelines report of the U.S. Department of Energy these building types have a natural connection with the outdoors; and the structures present an opportunity to interpret the resource-conservation mission of the agency to the visiting public. These structures typically combine a need for window area, massive construction, and a tolerance for temperature swings—all of which are highly compatible with low-energy building design. Day lighting is another key strategy for deployment in these building types. (Low-Energy Building Design Guidelines) However, the energy balance of a Non-Residential building is almost independent, from lighting and internal gain. A great opportunity on these kinds of buildings, is to apply the low energy methods and design, due to the fact that such buildings have low energy consumption. A visitor centre is a good example, of this kind of building, and usually they have big budgets allowing the choice of high tech materials and technologies. (Low-Energy Building Design Guidelines) Urban Office Buildings Urban office buildings are usually located in the city centres because these buildings offer public services, to the people. As known, urbanization in most countries carries negative consequences for the city centres, for example, expensive land prices. Due to this fact, the design and use of these buildings must be compact and offer the maximum possible. The use of the building is generally defined by the services that are offered, and the space is then separated into offices and support facilities. (Low-Energy Building Design Guidelines) Quite frequently, another characteristic of office buildings is their old style, as well as other restrictions, due to the fact that many countries conserve the old buildings in the city centres. Thus the changes for energy conservation or better energy performance on these buildings are limited and therefore it is difficult to apply low energy strategies. In addition, the development of the surrounding area and the high tower new buildings are an important factor, which influence the energy performance of an office building due to the shade provided. (Low-Energy Building Design Guidelines) On the other hand, new urban office buildings have a great opportunity to save energy as new technologies and design can be afforded and are significant potentials. Another point which helps low energy designs to be applied on office buildings is the wide use of curtain walls, mainly in most of the downtown buildings. The problems which can occur from the use of this kind of buildings is lack of thermal comfort, lack of orientation and the overuse of glass enhance low energy buildings design. New approaches on the office buildings, has started to be applied and they are getting transformed into high technology buildings, which offer better services to the people who work there. A key factor of successful low energy office buildings is the placement of the private office at the back side of the building. As a result of this design, the artificial lighting will be reduced as natural lights are directed further into the buildings. This will have a significant impact not only for energy demands but also to the HVAC systems. Nevertheless, Urban Office Buildings demand a careful design which takes into account the climate, the orientation, the facade design, the HVAC, shading from the surrounding buildings and the complex interactions amongst lighting. (Low-Energy Building Design Guidelines) All the above types of buildings constitute the common categories that serve the different human needs. However, there are many subcategories which are adapted specifically for each different climate and different needs. Energy impacts of the buildings The energy impacts of a building, is a very important factor to consider, in order to succeed with the design of low energy buildings. The different types of buildings and the differences between their energy demands, is the key for the development of zero energy buildings. As mentioned before, each type of building is designed for a specific use and to cover different needs. Starting with the residential buildings, studies show us, greater energy consumption than the commercial buildings. The report includes six different regions which are Brazil, China, Europe, India, Japan and the United States. During this report the residential sector is divided into two categories, consisting of the single family and the multi-family buildings, this way being able to focus on the energy performance for each case. (Reference- energy efficiency in buildings –market) Consumption Survey; Federcasa, Italian Housing Federation (2006), Housing Statistics of the European Union 2005/2006; Statistics Bureau, Ministry of Internal Affairs and Communications (2003), 2003 Housing and Land Survey (Japan); EEB core group research) (Reference- energy efficiency in buildings –market) As the above figure shows (figure 9), single family buildings are more common in Brazil, India and the United States, in contrast with China, Europe and Japan where the single family buildings are at the same level as multifamily buildings. It is possible that in a few years, this global scenery will change and more multifamily buildings will be required, due to an increasing population of the earth and the growing urbanization in big countries. On the other hand, the development of the countries and economies will allow more people to get richer and own a single family house. (Reference- energy efficiency in buildings –market) Generally, the residential buildings tend to increase the energy demands all over the world. Unfortunately, the modern way of life includes extra comforts which are offered by the high technological appliances and the bigger buildings. As the quality of life increases, the energy consumption grows and more natural sources are needed to cover these human needs. Nevertheless, the energy demand is changing from country to country, as the climate and economy growth, are affecting peoples habits. (Figure 10) The above graph shows us that in six different regions, the economic growth and the climates have different impacts on the energy consumption of each country. For example, space heating is essential in Europe and China, in contrast with Japan and India where the use is low. Additionally in Japan, water heating is very important, whilst in other countries not so much. Another important point to notice on this graph, is cooking in India, as many areas do not have access to electricity therefore their main energy use, is cooking. (Reference- energy efficiency in buildings –market) Amongst the residential buildings, one big subcategory is the single family buildings. (Figure 11) All around the world, single family buildings have the greatest impact on energy consumption and CO2 emissions. In the developed countries, people tend to consume more energy at their homes, as they demand more comfort and have bigger spaces, better heating and cooling systems, artificial lighting and use more appliances. For example, whereas in Japan people tend to heat only one of the rooms instead of the whole house, but in Europe they tend to install central heating systems and heat the whole building. All these factors reflect the changes of peoples behaviour, as they become wealthier from the economic growth. It is a fact, that as more people will become wealthier the demand for single family homes will also increase, and the demand will then be greater than today, therefore increasing the energy consumptions. (Reference- energy efficiency in buildings –market) The issue of reducing consumption in single family buildings is not so simple. In general, all countries encounter serious barriers when it comes to taking effective measures for lower energy consumption. In Europe, many of the buildings that already exist, have an enormous challenge to retrofit these old buildings and apply low energy building principles. Definitely, these changes will cost money and everyone is interested in getting financial backing from the governments. Another issue at hand is to raise awareness, about all the changes that everyone needs to know about, especially with regards to the green technology and the proposed energy solutions which will cover their needs, and be easy to install. Unfortunately until now, the lack of information and financial measures has not helped the development of green technologies and designs for single family houses. The World Business Council for Sustainable Development mention that there are two key barriers to transforming what is currently a refurbishment market into an energy-efficient market: the first one is that people do not know where to find the relevant information on options, prices and suppliers; there are no one-stop shops for retrofitting and the second one is that homeowners base decisions largely on the first cost rather than overall financial returns. (Reference- energy efficiency in buildings –market) In developing countries, the biggest problem is the lack of regulations and mechanisms which would then force the people and the market to change. For example, in China the building codes are not effectively applied and in Brazil, 75% of the single homes are illegally built. In addition, developing countries as mentioned before have different needs to the developed countries, so the need to provide houses is more essential that the need to reduce energy consumption. (Reference- energy efficiency in buildings –market) In Japan and the US, the growing population is followed by high rates of constructions. This rapid development of the market causes huge problems to also then apply the green principles on a big scale. Another major problem in these countries is the big differences between the submarket which block, in some ways, the measures of low energy design. The key to the solution in these countries is strengthening their regulations, by giving more information to the public and changing their behaviour. (Reference- energy efficiency in buildings –market) In the cases of the multifamily buildings, which belong in Residential buildings sector, another approach is necessary for energy efficiency. These types of buildings are commonly located in cities where the urbanization problems are huge. In Europe, the US and Japan these buildings vary from very small to luxury apartments, so the energy demand is also varied. As referred to before, many of the buildings in the centre of the towns were built many years ago, so to achieve energy efficiency and apply the low energy principle is a great issue. In developing countries, incomes influence the preference for bigger houses and more energy consumption, therefore making a multifamily building a key factor for lower energy demand. (Reference- energy efficiency in buildings –market) Still, comparing single family homes with apartments, obviously the energy needs in an apartment are less due to their small size and space and lower exterior wall area. Looking at the example of the US (figure 12), apartments use almost half the heating energy and lighting energy than a single family house. In general, the energy profile of a single family house is much higher than that of the multifamily building. It is almost definite, that due to the increasing population the living standards in developing countries are growing fast which influences the energy demand. (Reference- energy efficiency in buildings –market) The office sector in most countries has a significant impact on the energy consumption. These kinds of buildings belong to the commercial buildings sector and they are one of the biggest categories, as they use large amounts of space and energy! The actual buildings, depending on their use, can be found having a great variety, which are from small single buildings to skyscrapers. Usually though, due to the rapid world development which demands more public services, the office buildings are newer rather than older buildings. In China, where technological developments and services increase rapidly, the office sectors are growing rapidly. Additionally, the technological developments influence and change ones working life as with new high technology, it is easier for some people to work from their homes. The results of these new trends, is the reduction of the floor space needed per person, having fewer large offices and more flexible space. All these factors influence the energy consump tion of an office building. Some other factors that affect the energy demand in office buildings are the same ones as the ones for Meeting Energy Demands of the Growing Population Meeting Energy Demands of the Growing Population Literature review Nowadays, an important factor for economic and social development is energy sufficiency. Energy is the fuel of growth. Scientists predictions show that by the year 2050, energy demand will increase significantly due to the fact of the increasing population of the earth and that more buildings are going to be constructed. (Ref: Facts and trends, energy and climate, world business). A lot of predictions are published about how fast the population, the economy and the energy consumption of the world will increase in the years and decades to come. In reference to the matter of growth, development and energy demand, most of the predictions were wrongly made. Most predictions are reciprocally dependant on each other, and each one relies on many other factors. However, the only prediction that can be securely made is for the population and that the growth will be larger in the less development countries than the developed countries. (UNITED NATIONS) Developed countries are managing to improve the living conditions and decrease the death rates, but at the same time the birth rates have been decreasing at about the same rate over the last century. By this way the population growth is around 0.4% per year, in the industrialized world. On the other hand, less developed countries are managing their development and as a result have increased birth rates and decreased death rates. Consequently, their average population growth has increased from about 1% per year, from fifty years ago to about 2.1% per year today. At the moment, the worlds population is increasing at an annual rate of 1,7%, whereas the population in developed countries is around 1,2 billion (25% of the total) and in less developed countries is around 4 billion (75% of total world population). (United Nations) Population increases are directly connected with the energy demand and the building sector. It is therefore essential to develop new energy technologies on a massive scale for everyone to be able to survive on this planet. Ordinary buildings are unable to contribute to these essential needs, and cover the gush of the energy demand which is going to follow over the next decade. Energy use and climate impacts Power plants use fossil fuels for their energy productions and therefore this way cover the energy demands of the people. As a consequence though, from the burning of the fossil fuels, green house gases are produced and emitted into the atmosphere. As mentioned in the introduction, these anthropogenic activities have a significant contribution to the green house effect and the climate changes. Generally, in reference to the climate changes issues, scientists opinions are split into two. On the one hand, it is believed that the changes are part of the earths life and it is something normal which has been accelerated by our human activities and there is a possibility to stabilize the climate changes. On the other hand, it is believed that these changes are not normal and are going to make the world uninhabitable. For this reason, fast and immediate actions should be taken by all countries, targeting to reduce the energy demands and green house gases. It is almost definite that any of these actions will have a deep impact on the economy of each country. Many people believe that energy saving, means diminishing the current quality of living and reducing economy activity. In addition, economists believe that without economic growth, investments on technology will be reduced as it will difficult to confront climate changes. On the other hand, scientists argue that technological development is the key to the solution in reference to the climate changes problem. The truth is that, any solution in reference to climate changes will need an effort from everyone and investments on technological research and development, giving us this way a chance for a better future! IPCCs fourth assessment report further concluded that the building sector is not only the largest potential for significantly reducing greenhouse gas emissions, but also that this potential is relatively independent of the cost per ton of CO2 eqv. achieved. With proven and commercially available technologies, the energy consumption in both new and old buildings can be cut by an estimated 30-50 percent without significantly increasing investment costs. Energy savings can be achieved through a range of measures including smart design, improved insulation, low-energy appliances, high efficiency ventilation and heating/cooling systems, and conservation behaviour from the buildings users. (Reference- IPCCs fourth assessment report) Summarising the above it is obvious that the population growth, economic development, human habits, way of living and environmental restrictions influence the energy demand around the world. Scientists and in general, the governments who are trying to give solutions to the big problem of the growing energy demands and its consequences, have to take into account all of these factors. Reshaping the energy future It is necessary for all countries to reshape the future of energy, as all scientific researches show. The actual word reshape, includes new innovation technologies and sources which are going to contribute to the energy needs of the world. It is necessary to find new paths which are further environmental friendly and will permit a better future. A lower carbon world is feasible in the next decade even during the next few years, if all countries can realize that significant changes that should be done. This especially applies to the developed countries as they have to reconsider and find a link between the quality of life and their energy consumption. It is necessary for everyone to understand that a high standard of living does not demand a high consumption of energy and to adapt to the new energy sources. The good news is that small changes in the energy scenery are now visible as many have started to be influenced. For example, the raised use of gas, the use of renewable energy on buildings, everyday life and high efficiency cars are some of the small steps that have been offered to people due to technological development. As figure three shows, the IPCC scenarios (A1B-AIM and B2-AIM) were based on the new technological achievements in the energy sector. It is definite that this evolution is not enough for our earths climate but the two scenarios predict a possible CO2 stabilization. Finally, efforts to create an energy efficient world are starting, in reference to low carbon technologies and effective measures. (Reference-world business facts and trends on climate change) As stated in the report of the World Business Council for Sustainable Development (WBCSD) a lower carbon world would require a marked shift in the energy/development relationship, such as similar development levels to be achieved with an average of 30% less energy use. Both energy conservation through behavioural changes and energy efficiency via technology plays a role. Such a trend is a feature of the IPCC B1 storyline, which sees a future with a globally coherent approach to sustainable development. It describes a fast-changing and convergent world toward a service and information economy, with reductions in material intensity and the introduction of clean and resource efficient technologies. The scenario leads to relatively low GHG emissions, even without explicit interventions to manage climate change.'(Reference Energy and climate change, world business) A Sustainable World Energy Perspective An important key to the worlds energy problem is sustainable development. Sustainability includes the economic and technological development, which respect and protect the environment. Searching literature for an exact definition of sustainable development, guided us to the The Brundtland Report of the UN World Commission on Environment and Development. In this report a definition of sustainable development, is given: Humanity has the ability to make development sustainable – to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs However it is difficult to find exact definitions which represent the sustainable development accurately, due to the fact that it is an idea which involves too many parameters. (Reference Engineering_for_Sustainable_Development) It is amazing to see how the sustainable development concept, stays on important issues of discussion even with the passing of tweedy years from the Brundtland report. In this concept, development faces three important paths: the economic, the social and the environmental (figure 4). If governments want to meet these targets it is necessary to carry out innovative technologies and a socio-economic approach. Nevertheless, sustainable development is not the only problem and therefore it is always important to consider the three major paths. Protection of the environment, economic success and improvement of social conditions, will be the achievements of a flourishing sustainable development. These three paths are linked together for a sustainable development and their integration must be equal without any compromises. The goal of sustainable development is, to point out the importance of the environment to the public who are now alive and for the coming generations. It is important for everyone to understand that our existence depends on the global environment and every decision of this generation is going to affect the lives of our future generations. Thus for this goal to be achievable, it is necessary to take measures for low green house emissions, use renewable sources and improve the energy consumption of our current lives. Governments and engineers are searching for the best way to come within reach of this goal as it is very difficult for developed and developing countries to achieve it. Presently, the building sectors involvement is essential because of its deep impact on energy consumption, its significant emissions and its use of huge natural sources. The buildings that currently exist will continue to exist, for more than 30 years and therefore this influences the lives of future generations. A sustainable approach of this sector is necessary due to its rapid growth. The new approach for the buildings sector will include buildings which will need less energy to operate, produce low carbon emissions, use environmental friendly materials and produce their own energy from renewable sources. It is almost definite that the sustainable green development of the building sector will help countries accomplish the targets of the Kyoto Protocol, whilst also guarantee at the same time, the future for coming generations. Evolution of the buildings and the opportunity for change. As believed by many, buildings are our third skin and this plays an important role for humans to survive. From the beginning of human history, humans always aimed to try and protect themselves from all weather conditions and all changes, developing due to this, different kinds of shelters. Over the years, humans adapted and managed to survive all the different changes that have happened on earth. The question now, is what will happen whilst we are facing the rapid climate changes and what will be the future consequences? Hundreds of thousands year ago, people moved from place to place and tried to create the best conditions to live in. Depending on the place, whether hot or cold, humans developed different kind of shelters to protect themselves from the heat of the sun in the deserts, or the cold of the northern climates. Studies of these people movements over the years, shows us a big variety of shelters and developments of different ways in order to face the climate conditions. Other factors, which determine the humans survival techniques in extreme conditions from the past, like the lower attitude of the Arctic Circle, were the design of the buildings, the quality of clothes and the behavioural adaptations, like changing posture, activity level sand choosing the most comfortable space to occupy, by moving around rooms and buildings and landscapes; and then of course the use of energy from the burning of fossil fuels or the careful use of stored energy in heat or cold stores. (Adapting building cities for climate change) Another extraordinary point from past decades is the energy issue. People mainly used coal, wood and water to provide themselves with enough energy, whether in a passive or active manner and covered in this way, their need for heating or cooling. By taking advantage of the natural and available energy resources, humans managed to develop houses which were ready for all extreme weather conditions. All these extreme weather conditions made humans innovate new approaches for buildings, and provide them with a more comfortable life. An interesting approach of surviving all the climate changes is to move to different areas at the respective time of the year, which is when they are comfortable, and to leave them again when they are not – to migrate. (Adapting building cities for climate change) This approach is an impossible one to apply, in the modern way of life and the new cities. Nevertheless what could be extracted from the past is the expertise of the ancient people and the way they faced the climate changes. In our day and age, engineers and scientists use the knowledge from the past whilst at the same time search for new innovative approaches for the buildings. The evolution of the buildings sector involves the innovation of new technologies whilst the same time, protecting the environment and its natural sources. It is not just a matter of how to build or what to build but it is also a matter to make the buildings adaptable to the new challenges of the climate changes and energy efficient. This evolution is directly connected with the world surviving because buildings are part of the global environment which at the moment is in danger. As written in the book titled Adapting Buildings and Cities for Climate Change the risk of not surviving in a particular building type and region will be largely dependent on the nature of that building and on how much the climate changes. Both are crucial in the challenge of designing buildings today in which people can be comfortable in 50 years time. At the point where the evolution of the building sectors began, there are great opportunities to change the current negative predictions of the climate changes. Significant reductions on energy consumption, better design, adequate technology and appropriate behaviours are some of the keys points which could accomplish the transformation of the buildings sector (figure 7). This transformation needs the participation and contribution from the businesses, the markets, the politicians and engineers. All together, they must act right away because the use of renewable sources is slowly growing and the energy demand is rapidly increasing, setting this way, tight deadlines in order to transform the sector. As it is mentioned in the Energy Efficiency, Buildings report and the IPPC 4th Assessment report, Residential and commercial buildings, action is essential as part of the worlds response to climate change because energy use in buildings is 30-40% of final energy consumption and carbon diox ide emissions in most countries. (Reference- Energy Efficiency in the Buildings report and the IPPC 4th Assessment report, Residential and commercial buildings) There are many opportunities to transform the buildings sector into the new era, as well as being feasible and applicable for old and new buildings. Significant energy reductions can be achieved by using new technologies, e.g. energy efficiency appliances, low consumption cooling systems etc, use of renewable sources, better design and operation and use of environmental friendly materials. Using these methods it will be possible to reduce the energy demand of up to two-thirds. Low-energy buildings must become the norm rather than the novelty project. (Reference- Energy Efficiency in the Buildings report) Beyond the opportunities given to change the buildings sector and stabilize the climate changes, this transformation will additionally contribute to the economy growth by giving new opportunities for jobs and businesses. (Reference- Energy Efficiency in the Buildings report)As already mentioned, the transformation will only succeed in the case where, building energy becomes a high priority to the governments and businesses leaderships, whilst cooperation between engineers, businesses and authorities is also established in reference to this issue.( Reference- Energy Efficiency in the Buildings report) Buildings types: characteristics and profiles Around the world, a vast variety of different types of buildings can be found, and each different type covers multiple and different needs. It is therefore essential at this point, to present the different types of buildings, as this report will focus on the buildings sector and the energy demands. Despite the fact that in the literature review, it is possible to find a plethora of terminology of the building types, nevertheless the general idea of this separation, of the buildings into categories is the same. Usually the separation of the buildings is a result of its use. It is very important to additionally mention at this point, that in most countries, many of the buildings were built before any energy regulation and these buildings will be around for at least the next 40 years. As figure 8 shows, in Europe, 50% of the buildings were built before 1975. Residential Buildings Residential buildings are commonly found all over the world. However, big and small differences can be found in all of them depending on the climate varieties of each country. For example, in hot climates the important need is for cooling and keeping the temperatures comfortable all over the house. This is achieved by the use of control systems, high insulation materials, shading systems and double or triple glazing. Additionally, this way, the energy demands and cost stays under control. In addition, a high use of passive or active solar systems is found in these hot climate countries. On the other hand, buildings in the cold climates have different needs to achieve temperature comfort. In these climates, the need for heating is essential but this is directly related with other parameters, such as low emissivity windows, good insulation materials and good design. It is very important in these climates, whilst designing, to consider the thermal mass of the building, as this may contr ibute during the night to the heating. (Low-Energy Building Design Guidelines) Where residential buildings are concerned, it is easy to use renewable sources and cover the energy needs of a house because the demand is not so big. For example, photovoltaic systems can be used as the main source of energy, minimizing the CO2 emissions and the operation costs of the building. Non-Residential Buildings Non-Residential Buildings are also commonly located all over the world. In contrast with the Residential buildings, these kinds are appropriate for extreme hot or cold climates, without any access to utilities. As it is described in the Low-Energy Building Design Guidelines report of the U.S. Department of Energy these building types have a natural connection with the outdoors; and the structures present an opportunity to interpret the resource-conservation mission of the agency to the visiting public. These structures typically combine a need for window area, massive construction, and a tolerance for temperature swings—all of which are highly compatible with low-energy building design. Day lighting is another key strategy for deployment in these building types. (Low-Energy Building Design Guidelines) However, the energy balance of a Non-Residential building is almost independent, from lighting and internal gain. A great opportunity on these kinds of buildings, is to apply the low energy methods and design, due to the fact that such buildings have low energy consumption. A visitor centre is a good example, of this kind of building, and usually they have big budgets allowing the choice of high tech materials and technologies. (Low-Energy Building Design Guidelines) Urban Office Buildings Urban office buildings are usually located in the city centres because these buildings offer public services, to the people. As known, urbanization in most countries carries negative consequences for the city centres, for example, expensive land prices. Due to this fact, the design and use of these buildings must be compact and offer the maximum possible. The use of the building is generally defined by the services that are offered, and the space is then separated into offices and support facilities. (Low-Energy Building Design Guidelines) Quite frequently, another characteristic of office buildings is their old style, as well as other restrictions, due to the fact that many countries conserve the old buildings in the city centres. Thus the changes for energy conservation or better energy performance on these buildings are limited and therefore it is difficult to apply low energy strategies. In addition, the development of the surrounding area and the high tower new buildings are an important factor, which influence the energy performance of an office building due to the shade provided. (Low-Energy Building Design Guidelines) On the other hand, new urban office buildings have a great opportunity to save energy as new technologies and design can be afforded and are significant potentials. Another point which helps low energy designs to be applied on office buildings is the wide use of curtain walls, mainly in most of the downtown buildings. The problems which can occur from the use of this kind of buildings is lack of thermal comfort, lack of orientation and the overuse of glass enhance low energy buildings design. New approaches on the office buildings, has started to be applied and they are getting transformed into high technology buildings, which offer better services to the people who work there. A key factor of successful low energy office buildings is the placement of the private office at the back side of the building. As a result of this design, the artificial lighting will be reduced as natural lights are directed further into the buildings. This will have a significant impact not only for energy demands but also to the HVAC systems. Nevertheless, Urban Office Buildings demand a careful design which takes into account the climate, the orientation, the facade design, the HVAC, shading from the surrounding buildings and the complex interactions amongst lighting. (Low-Energy Building Design Guidelines) All the above types of buildings constitute the common categories that serve the different human needs. However, there are many subcategories which are adapted specifically for each different climate and different needs. Energy impacts of the buildings The energy impacts of a building, is a very important factor to consider, in order to succeed with the design of low energy buildings. The different types of buildings and the differences between their energy demands, is the key for the development of zero energy buildings. As mentioned before, each type of building is designed for a specific use and to cover different needs. Starting with the residential buildings, studies show us, greater energy consumption than the commercial buildings. The report includes six different regions which are Brazil, China, Europe, India, Japan and the United States. During this report the residential sector is divided into two categories, consisting of the single family and the multi-family buildings, this way being able to focus on the energy performance for each case. (Reference- energy efficiency in buildings –market) Consumption Survey; Federcasa, Italian Housing Federation (2006), Housing Statistics of the European Union 2005/2006; Statistics Bureau, Ministry of Internal Affairs and Communications (2003), 2003 Housing and Land Survey (Japan); EEB core group research) (Reference- energy efficiency in buildings –market) As the above figure shows (figure 9), single family buildings are more common in Brazil, India and the United States, in contrast with China, Europe and Japan where the single family buildings are at the same level as multifamily buildings. It is possible that in a few years, this global scenery will change and more multifamily buildings will be required, due to an increasing population of the earth and the growing urbanization in big countries. On the other hand, the development of the countries and economies will allow more people to get richer and own a single family house. (Reference- energy efficiency in buildings –market) Generally, the residential buildings tend to increase the energy demands all over the world. Unfortunately, the modern way of life includes extra comforts which are offered by the high technological appliances and the bigger buildings. As the quality of life increases, the energy consumption grows and more natural sources are needed to cover these human needs. Nevertheless, the energy demand is changing from country to country, as the climate and economy growth, are affecting peoples habits. (Figure 10) The above graph shows us that in six different regions, the economic growth and the climates have different impacts on the energy consumption of each country. For example, space heating is essential in Europe and China, in contrast with Japan and India where the use is low. Additionally in Japan, water heating is very important, whilst in other countries not so much. Another important point to notice on this graph, is cooking in India, as many areas do not have access to electricity therefore their main energy use, is cooking. (Reference- energy efficiency in buildings –market) Amongst the residential buildings, one big subcategory is the single family buildings. (Figure 11) All around the world, single family buildings have the greatest impact on energy consumption and CO2 emissions. In the developed countries, people tend to consume more energy at their homes, as they demand more comfort and have bigger spaces, better heating and cooling systems, artificial lighting and use more appliances. For example, whereas in Japan people tend to heat only one of the rooms instead of the whole house, but in Europe they tend to install central heating systems and heat the whole building. All these factors reflect the changes of peoples behaviour, as they become wealthier from the economic growth. It is a fact, that as more people will become wealthier the demand for single family homes will also increase, and the demand will then be greater than today, therefore increasing the energy consumptions. (Reference- energy efficiency in buildings –market) The issue of reducing consumption in single family buildings is not so simple. In general, all countries encounter serious barriers when it comes to taking effective measures for lower energy consumption. In Europe, many of the buildings that already exist, have an enormous challenge to retrofit these old buildings and apply low energy building principles. Definitely, these changes will cost money and everyone is interested in getting financial backing from the governments. Another issue at hand is to raise awareness, about all the changes that everyone needs to know about, especially with regards to the green technology and the proposed energy solutions which will cover their needs, and be easy to install. Unfortunately until now, the lack of information and financial measures has not helped the development of green technologies and designs for single family houses. The World Business Council for Sustainable Development mention that there are two key barriers to transforming what is currently a refurbishment market into an energy-efficient market: the first one is that people do not know where to find the relevant information on options, prices and suppliers; there are no one-stop shops for retrofitting and the second one is that homeowners base decisions largely on the first cost rather than overall financial returns. (Reference- energy efficiency in buildings –market) In developing countries, the biggest problem is the lack of regulations and mechanisms which would then force the people and the market to change. For example, in China the building codes are not effectively applied and in Brazil, 75% of the single homes are illegally built. In addition, developing countries as mentioned before have different needs to the developed countries, so the need to provide houses is more essential that the need to reduce energy consumption. (Reference- energy efficiency in buildings –market) In Japan and the US, the growing population is followed by high rates of constructions. This rapid development of the market causes huge problems to also then apply the green principles on a big scale. Another major problem in these countries is the big differences between the submarket which block, in some ways, the measures of low energy design. The key to the solution in these countries is strengthening their regulations, by giving more information to the public and changing their behaviour. (Reference- energy efficiency in buildings –market) In the cases of the multifamily buildings, which belong in Residential buildings sector, another approach is necessary for energy efficiency. These types of buildings are commonly located in cities where the urbanization problems are huge. In Europe, the US and Japan these buildings vary from very small to luxury apartments, so the energy demand is also varied. As referred to before, many of the buildings in the centre of the towns were built many years ago, so to achieve energy efficiency and apply the low energy principle is a great issue. In developing countries, incomes influence the preference for bigger houses and more energy consumption, therefore making a multifamily building a key factor for lower energy demand. (Reference- energy efficiency in buildings –market) Still, comparing single family homes with apartments, obviously the energy needs in an apartment are less due to their small size and space and lower exterior wall area. Looking at the example of the US (figure 12), apartments use almost half the heating energy and lighting energy than a single family house. In general, the energy profile of a single family house is much higher than that of the multifamily building. It is almost definite, that due to the increasing population the living standards in developing countries are growing fast which influences the energy demand. (Reference- energy efficiency in buildings –market) The office sector in most countries has a significant impact on the energy consumption. These kinds of buildings belong to the commercial buildings sector and they are one of the biggest categories, as they use large amounts of space and energy! The actual buildings, depending on their use, can be found having a great variety, which are from small single buildings to skyscrapers. Usually though, due to the rapid world development which demands more public services, the office buildings are newer rather than older buildings. In China, where technological developments and services increase rapidly, the office sectors are growing rapidly. Additionally, the technological developments influence and change ones working life as with new high technology, it is easier for some people to work from their homes. The results of these new trends, is the reduction of the floor space needed per person, having fewer large offices and more flexible space. All these factors influence the energy consump tion of an office building. Some other factors that affect the energy demand in office buildings are the same ones as the ones for

Sunday, August 4, 2019

The Rise of Materialism Exposed in Winter of Our Discontent :: Winter Our Discontent

The Rise of Materialism Exposed in Winter of Our Discontent John Steinbeck showed alarm and disapproval to the rise of materialism and the post-World War 2, capitalistic morals found in America during the 1960's. These views were expressed through various characters in his novel The Winter of Our Discontent . This book dealt with the downward spiral of a good man, Ethan Allen Hawley. Pressured on all sides by influences once considered immoral, but now accepted in the 1960's, Ethan, a grocery store clerk from a family of sea captains and wealthy businessmen, "...traded a habit of conduct and attitude for comfort and dignity and a cushion of security" (257). Ethan's son Allen embodies the ideals of the up and coming generation in the 1960's. Growing up in the age of the supermarkets, game show scandals, and fixed traffic tickets, Allen's view of "Something for nothing. Wealth without effort" (91) represented the exact opposite that of his father. Ethan, a man perhaps too concerned with the past, was a character Steinbeck used to speak his voice. Ethan was a man accustomed to honesty, good business, and respect. Allen lived in a world much different than that of Ethan. Allen was raised thinking that being dishonest, immoral, and underhanded was accepted. "Everybody does it. It's the way the cooky crumbles." (353), Allen said when confronted by his father about plagiarizing famous speeches for the "I Love America Contest". The only real opposition came when a person got caught. It almost seemed as if society allowed these illegal actions as long as the person(s) evaded punishment. The only reason Allen seemed upset was because he got caught, not because what he had done was wrong. Steinbeck seemed to show that he felt family history to be very important. Ethan showed great persistence in asking Mr. Baker about the sinking of the Belle-Adair , which Ethan's predecessors felt to have been purposefully burned by the Baker family for the insurance money. Ethan's primary motivation to make a few immoral decisions came from internal pressure he felt to live up to the name of Hawley. He seemed very self-conscience and maybe even ashamed of the fact that he was a lowly grocery clerk, in a foreign owned store, which his family had once owned. Ethan began to hate Mr. Baker when he discovered that the Baker family had used the Hawley's trust in them to gain more land in New Baytown by giving bad investment tips.

Saturday, August 3, 2019

Larry Ellisons Contributions to Computer Technology Essay -- Technolo

Abstract Larry Ellison is among the top names in the computer industry. He has been fiercely competitive with Bill Gates over the years. That competitive nature may very well be the driving force behind some of his contributions to the world of computer technology. Childhood and Education It is important to understand the background and education of Larry Ellison in order to understand what drives and motivates him in his adult life. Ellison was not a child of privilege. He did not grow up with parents who were scientists or pushed him to excel. According Wikipedia, Larry Ellison was born to a 19 year old unwed Jewish mother who felt compelled to give him up to her aunt and uncle to raise him. He grew up in a two bedroom apartment in a Jewish community in South Shore Chicago. Academy of Achievement website states in the biography about Ellison, he left the University of Illinois during second year final exams when his adoptive mother died. Later that fall he enrolled in the University of Chicago but dropped out after the first semester. Academy of Achievement goes on to say, â€Å"His adoptive father was now convinced that Larry would never make anything of himself, but the seemingly aimless young man had already learned the rudiments of computer programming in Chic ago.† CEO of Software Development Labs According to Academy of Achievement, Ellison moved to California where he worked with a few different companies. One of those companies was Amdahl Corporation where Ellison was able to participate in building the first IBM-compatible mainframe system. Ellison and two other co-workers pursued founding a new company named Software Development Labs. Ellison functioned as CEO of this newly founded company. It was at this company h... ...n Wikipedia, The Free Encyclopedia. Retrieved August 15, 2010, from http://en.wikipedia.org/w/index.php?title=Larry_Ellison&oldid=379100685. "Larry Ellison Biography -- Academy of Achievement." Academy of Achievement Main Menu. N.p., n.d. Web. 15 Aug. 2010. http://www.achievement.org/autodoc/page/ell0bio-1. "What are relational databases?†. (March 23, 2001). HowStuffWorks.com. Retrieved August 15, 2010. http://computer.howstuffworks.com/question599.htm. "Larry Ellison 1944 - Biography - Early life, Software development laboratories, Relational databases, Building oracle, Maturity, The internet revolution, Downturn." Reference For Business - Encyclopedia of Small Business, Business Biographies, Business Plans, and Encyclopedia of American Industries. N.p., n.d. Retrieved August 16, 2010. http://www.referenceforbusiness.com/biography/A-E/Ellison-Larry-1944.html.

Friday, August 2, 2019

Visitor and The Speckled Band Fitting into the Short Story Genre :: Sir Arthur Conan Doyle Roald Dahl Essays

Visitor and The Speckled Band Fitting into the Short Story Genre The aspects of a typical short story genre are a misleading title, an unsure opening, little knowledge of characters, short time scale, little setting and a typical ending. In the two short stories ' Visitors ' and ' The Adventure of The Speckled Band ' there are aspects of both stories which show a typical short story genre. In ' Visitor ' the title is suggesting that the story will have a visitor of some description but this could be a relative, friend or even an unexpected guest. Also it may be a planned visit but either way the title is a misleading one. The visitor in ' Visitor ' is robber yet in this story a robber isn't an unwanted guest but an expected one. In reply the police are unwanted guests who not expected. " This is a robbery ", this is not the sort of thing we would call normal but in ' Visitor ' it is. The robbers in ' Visitor ' are " professional people " where as the police are not. With the police being described as " young men " something which normally would be described as robbers. The roles have been reversed in ' Visitor ' with the robbers being the usual visitors and the police being the unwanted visitors. The opening of a short story is always very unsure and brief. " Not again, not so soon! " here the audience is thrown straight into the story without really knowing anything about what is going on. The very start of ' Visitor ' is anonyous " she saw the mini bus ", gives the story a scared and nervous beginning. " The knocking was confident but not intimidating. Civilised ", This being unexpected as you wouldn't expect this of a robber but more of somebody you were expecting or somebody you were aquainted with.The thought of 3 men, 2 well proportioned, 1 normal size would normally be quite threatening but not in ' Visitor '. The characters in ' Visitor ' are normal yet unauthodox yet methodically they worked. The roles have been reveresed. With the robbers being civil and the police being unprofessional. There is no real main character and all of the characters are only briefly described. The universal figure in ' Visitor ', Mrs Morrison is somebody we as the audience find little about. Also with it being a short story there is not much time to envolve that many characters in it so there are only very few. The timescale of a short story is only very short and this can create

Thursday, August 1, 2019

Jack Davis’ play ‘No Sugar’ shows how families survive. Discuss. Essay

Jack Davis’ 1986 play No Sugar is a realist drama which examines the trials, tribulations and eventual survival of Millimurra-Munday family through the Great Depression as they are forcibly removed from their homeland in Northam to Moore River Native Settlement. The survival of their culture is dependant on the way that individuals shape their identity and in this play Davis shows how family is the cornerstone on which identity can be maintained even in the most traumatic of circumstances. Jimmy Munday survives and thrives as an individual because he has the support of his extended family. He finds his identity within his family and this security allows him to critically assess and comment on the motives behind government decisions such as the moving of Indigenous people from the Government Well Aboriginal Reserve in Northam to Moore River. ‘Whole town knows why we’re goin’. ‘Coz wetjalas in this town don’t want us ‘ere’ (p.50). Jimmy’s identity and survival are built on outward protest but other members of his family find more subtle forms of protest. Gran Munday is the matriarch and cornerstone of her family. She refuses to assimilate into the Indigenous identity determined by ‘white’ people. She looks after her family providing them with a sense of cultural and practical knowledge as is demonstated when she delivers Mary’s baby (p.102). Although Gran is a survivor who passes on knowledge and language to her children and grandchildren, Billy Kimberley is an example of someone who has lost his family and sense of identity.. Being the last of his tribe and people, Billy Kimberley has no family, or extended family and can be seen to be culturally caught between two worlds and lacking a true sense of identity. It is dramatically ironic that he is a ‘successful’ prototype of assimilation yet is rejected by both ‘white’ and Indigenous societies. The children even mock him and call him a traitor or ‘black crow’ (p.90) Ultimately, Jimmy’s line will die out with him and thus not only will he not survive and the culture, traditions and line of his family will die with him also. It is this fact which also seems to await Mary Dargurru whe we first meet her in the play. Mary is a young girl from the Kimberley region whose potential fate can be paralleled to that of Billy who is from the same region. However, when she meets and falls in love with Joe Millimurra, she finds a new family in the Millamurras. She not only finds her own identity through family but has the potential at the end of the play to pass that identity on through her family to her own child, baby Jimmy. As a young man on the cusp of manhood Joe Millimurra has a sense of his own destiny as shaped by his family and their connection to culture and their homeland near Northam. He learns from his family that he must stand up for what he believes in and this shapes his identity and survival. At the end of the play, Joe, Mary and their new born baby Jimmy go off with supplies and an empty sugar bag, not filled with the short term sweet platitudes of ‘white’ handouts, violence and condescension but with a supplies, a homemade knife and a sense of family, culture and identity that is hopefully enough to help them forge a new future in an old homeland. No Sugar is a play ultimately about family, identity and survival. Through the character of Jimmy Munday, Davis provides us with an Indigenous man, who although troubled by the injustices and dispossession thrust upon him, is still able to find a sense of purpose in his family. He does not survive physically but his legacy will live on through his nephew and his nephew’s son who bears his name. Gran Munday is shown to be a cornerstone crucial to the resilience and survival of all of her family through the connection she provides to their culture. This can be seen to be contrasted with Billy, an Indigenous tracker from the Kimberley who has lost his family, his culture and his identity and seemed doomed to a fate of not surviving and ‘fading away’. But the ultimate survivors of the play are Joe and Mary who both gain a sense of identity through family. It is this sense of identity gained through family that seems not only crucial for their survival as they go recla im their ‘place but which will hopefully become the cornerstone for survival and hopes of the next generation of Indigenous people as symbolized by their baby son, Jimmy.

Business Law Answer Key

Business Law Answer Key This is a comprehensive key to all the questions, including some chapters which we did not cover. You are responsible only for chapters on the syllabus. Ch. 1 A. 3 B. 5 C. 1 D. 2 E. 4 1. F 2. T 3. F 4. T 5. T 6. B 7. D 8. D 9. A 10. E Ch. 3 A. 5 B. 4 C. 2 D. 1 – 3 E. 3 – 1 †¢ Interrogatories is a pretrial procedure involving written questions to be signed under oath †¢ Deposition is a pretrial procedure involving oral questions answered under oath 1.F 2. F 3. T 4. T- F 5. T †¢ About one half of all lawsuits settle before trail -) True †¢ In a lawsuit for money damages, both the plaintiff and the defendant are generally entitled to a jury. -) True 6. E 7. D 8. C 9. C 10. D Ch. 4 A. 5 B. 6 C. 1 D. 2 E. 3 F. 4 †¢ Stare Decisis – The rule that requires courts to decide cases based on the precedent †¢ Promulgate- The act an administrative agency creating a new rule 1. T 2. F- T 3. T 4. F 5. F 6. F The due process c lause requires that any citizen is entitled to a jury trial before any right or property interest is taken -) False †¢ Administrative agencies play an advisory role in the life of many industries but do not have the legal authority to enforce their opinions. -) False 7. D 8. B 9. C 10. D 11. C 12. B †¢ If Colorado passes a hotel tax of 8 percent for Colorado residents and 15 percent for out of state visitors. The new law is void, based on the commerce clause. †¢ Which of these is an example of judicial review? A federal court declares a statute unconstitutional †¢ What is an example of a subpoena?A court order requiring a deponent to answer questions. Ch. 5 – Perfect!!!!!!! A. 4 B. 3 C. 6 D. 2 E. 1 F. 7 G. 5 1. F 2. F (not enough information; battery for sure) 3. T 4. F 5. T 6. D 7. A 8. C 9. C 10. C Ch. 6 A. 3 B. 5 C. 1 D. 2 E. 4 1. F 2. T (depends in which state – state law differs on this point) 3. F 4. T-F 5. T 6. F Some states are comparative n egligence states but the majorities are contributory negligence states. -) False A landowner might be liable if a dinner guest fell on a broken porch step but not liable if a trespasser fell on the same place. ) True 7. C 8. D 9. D 10. C Ch. 7 A. 5 B. 1 (this seems to be the best choice, although the definition sounds more like the Anti-Money Laundering Act rather than RICO, which was originally passed to combat organized crime). C. 4 D. 6 E. 3 F. 2 1. F 2. T 3. T 4. F 5. F †¢ Corporate officers can be convicted of crimes: corporation they cannot be -) False †¢ An affidavit is the government’s formal charge of criminal wrongdoing. †¢ Affidavit- a written statement signed under oath 6. D 7. E 8. A 9. A- E 10. B A prosecutor concerned that he may lack sufficient evidence to obtain a conviction may agree to an affidavit. †¢ Professor asks Janice, his teaching assistant to please drive the professor’s car to the repair shop. Janice gets in and drives, n ot to the garage, but 1,400 miles farther west to Las Vegas. Janice has committed Embezzlement. Ch. 9 A. 4 (this is how the textbook defines implied contracts, but keep in mind that if you spell out the terms of a contract, this is going to be an express contract; an implied contract is one which can be inferred from the conduct of the parties) B. 5 C. 3 D. 1 E. †¢ Implied contract- An agreement based on words and actions of the parties †¢ Consideration- Bargaining that leads to an exchange between the parties †¢ Liquidated debt- a debt in which the amount is undisputed. †¢ Bilateral contract- a common law principle requiring the acceptance to be on exactly the terms of the offer. 1. F 2. F 3. F 4. T 5. F 6. A (although E seems ok to me as well) 7. C (although A seems ok to me as well, but perhaps not enough facts are provided, so C is the better answer) 8. E 9. C- E 10. E Abdul hires Sean to work in his store, and agrees to pay him $9 an hour.  Control Key and Word – Text and Graphics.This agreement is governed by the UCC-)False †¢ If someone makes and offer and that person puts another offer on the table, they are rejecting the offer. Ch. 10 A. 3(intent is just one of the elements to prove fraud) B. 4 C. 5 D. 1 E. 2 Part Performance- Entry onto land, or improvements made to it, by a buyer who has no written contract Exculpatory Clause- a contract clause intended to relieve one party from potential tort liability 1. T 2. F 3. T- F 4. T 5. T 6. F †¢ Non compete clauses are suspect because they tend to restrain free trade. -) True 7.B 8. A 9. D 10. A 11. C 12. D †¢ If people are buying and selling a house and neither party has copy of the emails, they still have the parties still have a binding contract for the sale of Louise’s House. †¢ You drive up to a fancy restaurant and hand your car keys to the valet . You have created a Baliment. †¢ Bailment: giving possession and control of personal property to another person. CH. 16 A. 3 B. 4 C. 1 D. 5 E. 2 1. T-F 2. F-T 3. F 4. F-T 5. T †¢ A principal is always liable on a contract, whether he is fully disclosed, unidentified or undisclosed. ) True †¢ When a contract goes wrong, a third party can always recover damages from the agent, whether the principal is fully disclosed, unidentified, or undisclosed. -) False †¢ An agent may never act for two principals whose interest conflict-) false 6. B 7. C 8. B-D 9. C 10. A-none Someone painting the outside of a building you own crashed through a window, injuring a visiting executive. Which of the following questions would our lawyer not need to ask to determine if the painter was your employee? Had you checked the painter’s references?Which of the following activities committed by an agent is not likely to create liability for the principal. A car accident while driving to work. Ch. 17 A. 4 B. 6 C. 5 D. 2 E. 1 F. 3 1. F 2. F 3. F 4. T 5. T 6. F 7. F 8. F 9. F 10. E 11. A 12. B 13. C 14. E 15. A CH. 18 A. 1 B. 3 C. 4 D. 2 E. 5 1. T 2. T 3. F 4. F 5. T 6. B 7. E 8. D 9. D 10. B CH. 20 A. 2 B. 5 C. 4 D. 1 E. 3 1. F 2. T 3. T 4. F 5. F 6. C 7. A 8. D 9. C 10. C CH. 22 A. 4 B. 5 C. 3 D. 1 E. 2 1. F 2. T 3. F 4. F 5. T 6. D 7. C 8. B 9. B 10. C CH. 25 A. 4 B. 3 C. 5 D. 1 E. 2 1. T 2. T 3. F 4. T 5. T 6. B 7. C 8. D 9. B 10. A